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Abstract Perceptions of the flavors of foods or bev-
erages reflect information derived from multiple sen-
sory afferents, including gustatory, olfactory, and
somatosensory fibers. Although flavor perception
therefore arises from the central integration of multi-
ple sensory inputs, it is possible to distinguish the
different modalities contributing to flavor, especially
when attention is drawn to particular sensory char-
acteristics. Nevertheless, our experiences of the flavor
of a food or beverage are also simultaneously of an
overall unitary perception. Research aimed at under-
standing the mechanisms behind this integrated flavor
perception is, for the most part, relatively recent.
However, psychophysical, neuroimaging and neuro-
physiological studies on cross-modal sensory interac-
tions involved in flavor perception have started to
provide an understanding of the integrated activity of
sensory systems that generate such unitary percep-
tions, and hence the mechanisms by which these sig-
nals are ‘‘functionally united when anatomically
separated’’. Here we review this recent research on
odor/taste integration, and propose a model of flavor
processing that depends on prior experience with the
particular combination of sensory inputs, temporal
and spatial concurrence, and attentional allocation.
We propose that flavor perception depends upon
neural processes occurring in chemosensory regions of
the brain, including the anterior insula, frontal oper-
culum, orbitofrontal cortex and anterior cingulate
cortex, as well as upon the interaction of this

chemosensory ‘‘flavor network’’ with other heteromo-
dal regions including the posterior parietal cortex and
possibly the ventral lateral prefrontal cortex.

Multisensory integration

Integration of information from physiologically distinct
sensory modalities is a general property of the mam-
malian nervous system (Gibson 1966; Marks 1991;
Stein and Meredith 1993). Its purpose may be to en-
hance the detection or identification of stimuli, partic-
ularly in those cases where a single sensory modality
provides ambiguous, incomplete, or low perceptibility
information. Integration across sensory modalities is
reflected in the presence of multimodal neurons that
receive converging sensory information. Multimodal
neurons, such as those found in the superior colliculus
(Meredith and Stein 1986) may respond specifically to
combinations of different sensory inputs, or sensory-
specific neurons may be responsive to modulation by
other sensory modalities (Meredith and Stein 1983;
Meredith and Stein 1986; Stein and Meredith 1993;
Calvert et al. 1998). Evidence for multimodal integra-
tion comes from the supra-additive responses of such
neurons to multimodal stimulation, relative to unimo-
dal inputs (Meredith and Stein 1983; Meredith and
Stein 1986). This neural enhancement is then reflected
behaviorally in responses to multimodal stimuli. For
example, Stein et al. (1988) showed supra-additive
enhancement of accuracy of behavioral responses in
cats to visual stimuli through simultaneous presenta-
tion of auditory tones, even when the tones presented
unimodally were irrelevant to the task.

Supra-additive responses to audio-visual stimuli have
also been documented in the human using neuroimaging
techniques such as functional magnetic resonance imag-
ing (fMRI), positron emission tomography (PET), and
evoked related potential (ERP) mapping (Calvert et al.

D. M. Small
The John B Pierce Laboratory and Section of Otolaryngology,
Yale University School of Medicine, 290 Congress Avenue,
New Haven, CT 06519, USA

J. Prescott (&)
School of Psychology, James Cook University,
PO Box 6811, Cairns, QLD, 4870, Australia
E-mail: John.Prescott@jcu.edu.au

Exp Brain Res (2005) 166: 345–357
DOI 10.1007/s00221-005-2376-9



1997, 1999, 2000, 2001; Lewis et al. 2000; Macaluso et al.
2000; Bushara et al. 2001; Calvert 2001; Laurienti et al.
2002; Bushara et al. 2003; Calvert and Campbell 2003;
Lewald and Guski 2003; McDonald et al. 2003). One
advantage of these methods is that they enable obser-
vation of processing across many regions, if not the entire
brain, so that it is possible to measure simultaneous
activity in different cortical zones. In a review of the
neuroimaging literature on audio-visual integration
Calvert (2001) highlighted the involvement of several
heteromodal cortical zones in multisensory integration,
including the superior temporal sulcus and the posterior
parietal cortex, which she proposed were specialized in
enhancing identification and localization, respectively.
The role of sensory-specific cortex in cross-modal inte-
gration is a subject of current debate (Calvert et al. 1999;
Fort et al. 2002; Laurienti et al. 2002; Bushara et al.
2003). Many studies show enhanced activity in sensory-
specific regions when one stimulus enhances detection or
recognition of another (Calvert et al. 1999; Giard and
Peronnet 1999; Macaluso and Driver 2001). Other
studies show response depression during bimodal pre-
sentations (Lewis et al. 2000; Laurienti et al. 2002; Bus-
hara et al. 2003). What is clear is that modulation of
sensory-specific cortex appears to be a key aspect of
sensory integration and this indicates that multisensory
integration relies not only upon multimodal neurons but
also upon the information coded across networks of
unimodal neurons.

Odor/taste integration

Much of the human psychophysical evidence for inte-
gration of odors and tastes is derived from data
showing interactions between these distinct modalities
when they are experienced in mixtures—that is, as part
of a flavor. A commonly reported effect is the ability of
food odors such as strawberry or vanilla to enhance
sweetness when added to solutions of a tastant like
sucrose (Frank and Byram 1988; Frank et al. 1989,
1993; Bingham et al. 1990; Cliff and Noble 1990; Clark
and Lawless 1994; Prescott 1999; Stevenson et al.
1999). These increases in taste intensity are not medi-
ated by chemical interactions between the odorant and
tastant, since preventing odor volatiles from reaching
olfactory receptors (for example, by closing the external
nares during tasting) abolishes the effect. The odorants
are also typically tasteless when experienced alone in
solution. Moreover, rather than resulting from either a
general sensory summation, or being related to the
chemical compounds used, the effects are specific to the
taste and odor qualities. Frank and Byram (1988)
showed that strawberry, but not peanut butter, odor
enhanced the sweetness of sucrose; conversely, saltiness
was not enhanced by strawberry odor. Odor-induced
taste enhancement has been interpreted, in a similar
fashion to such multimodal effects in other modalities,
as a reflection of integrated cross-modal activity, in this

case reflecting the perception of flavor as a discrete,
functional sense (Prescott 1999, 2004).

Neuroimaging studies of olfaction, gustation, and
flavor are beginning to isolate a network of regions that
are likely responsible for taste/odor integration, and
hence flavor perception. Independent presentation of a
tastant or an odorant produces overlapping activation in
regions of the insula and operculum (Small et al. 1999;
Savic et al. 2000; Cerf-Ducastel and Murphy 2001; Cerf-
Ducastel et al. 2001; Poellinger et al. 2001), the orbito-
frontal cortex (OFC) (Zatorre et al. 1992; Small et al.
1997a, b; Zald and Pardo 1997; Sobel et al. 1998; Zald
et al. 1998; Francis et al. 1999; Small et al. 1999;
O’Doherty et al. 2000; Savic et al. 2000; O’Doherty et al.
2001; Poellinger et al. 2001), and the anterior cingulate
cortex (Zald and Pardo 1997; Zald et al. 1998; O’Doh-
erty et al. 2000; Savic et al. 2000; Small et al. 2001; de
Araujo et al. 2003; Royet et al. 2003; Small et al. 2003)
(Fig. 1). The insula, operculum, OFC and anterior
cingulate cortex are also sensitive to somatosensory
stimulation of the oral cavity (Pardo et al. 1997; Cerf-
Ducastel et al. 2001; de Araujo and Rolls 2004). Simi-
larly, single-cell recording studies in monkeys have
identified taste and smell-responsive cells in the insula/
operculum (Scott and Plata-Salaman 1999) and OFC
(Rolls and Baylis 1994; Rolls et al. 1996b). The presence
of unimodal representation of taste, odor, and oral
touch in the insula, frontal operculum, and OFC of the
human and nonhuman primate suggests that these re-
gions play a key role in integrating the disparate sensory
inputs that give rise to the flavor perception. Chemo-
sensory responses in the monkey anterior cingulate
cortex have yet to be investigated but the consistency of
responses in this region to taste and oral somatosensa-
tion (Small et al. 2003; de Araujo and Rolls 2004; Small
et al. 2004) in humans is highly suggestive of a role in
flavor processing.

These neurophysiological studies of taste and smell
highlight an important difference between chemosensory
and visual and auditory cortical representations. In
contrast to primary representation of vision and audi-
tion, which occurs in unimodal neocortex, early repre-
sentation of both taste and smell occurs in heteromodal
regions of the limbic and paralimbic brain. This suggests
that compared to audio-visual integration, taste–odor
integration occurs at earlier stages of processing and is
likely to be influenced by experience and affective factors
such as the physiological significance of a given stimulus,
since learning and affective processing are the primary
functions of this cortical zone (Mesulam 1998). The
possibility of very early cortical integration of the sen-
sory components of flavor is consistent with the fact that
taste perception is almost always accompanied by oral
somatosensation and retronasal olfaction.

Rolls and colleagues (Rolls and Baylis 1994; Rolls
et al. 1996a, 1999; Verhagen et al. 2003) have performed
a series of studies in which gustatory, olfactory, visual,
and oral somatosensory stimuli were presented to awake
behaving monkeys and responses were recorded from
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neurons located in the caudal OFC, extending into the
ventral insula. They identified unimodal taste, smell,
visual, fat, and texture cells that were interspersed with
multimodal cells that responded to independent stimu-

lation of two or more modalities. Interestingly the
strongest responses were often observed to multimodal
stimuli, such as blackcurrant juice compared to unimo-
dal stimuli such as glucose or banana odor. However,

Fig. 1 Images showing activation foci (peaks) reported in studies of
gustatory (red) and olfactory (blue) stimulation in the anterior
cingulate cortex (top left sagittal section), insula/operculum (bottom
left sagittal section) and orbitofrontal cortex (right axial section).
To collect the studies the following search terms were entered into
MEDLINE: (1) taste AND fMRI, (2) taste AND PET, (3)
gustation AND fMRI, (4) gustation AND PET, (5) olfaction and
fMRI, (6) olfaction AND PET, (7) smell AND fMRI, (8) smell
AND PET. Studies were excluded if (1) Talairach or MNI
coordinates were not reported; (2) subjects were not right handed;
(3) subjects were not young healthy adults; (4) stimuli had an
olfactory and a gustatory component (e.g. a food or drink); (5)
stimuli were not chemical (e.g. electric taste; imagery). Activation
foci were included only if they were produced by an analysis in
which a stimulus was compared to a baseline or if the analysis
compared or correlated a perceptual attribute (intensity, pleasant-
ness) of a taste or a smell stimulus. Activation foci were not
included if they were generated by an analysis aimed at isolating a
cognitive variable (e.g. short term versus long term olfactory
memory). This produced a total of 18 olfactory (Zatorre et al. 1992;
Zald and Pardo 1997; Fulbright et al. 1998; Royet et al. 1999, 2003;
Qureshy et al. 2000; Royet et al. 2000; Savic and Gulyas 2000; Savic
et al. 2000; Zatorre et al. 2000; Bengtsson et al. 2001; Cerf-Ducastel
and Murphy 2001; Poellinger et al. 2001; Gottfried et al. 2002a, b;
Zald et al. 2002; Anderson et al. 2003; Rolls et al. 2003;
Kringelbach et al. 2004) and 12 gustatory (Kinomura et al. 1994;
Kringelbach et al. 2004; Small et al. 1997a, b, 2003, 2004; Zald et al.
1998, 2002; Frey and Petrides 1999; O’Doherty et al. 2001, 2002; de
Araujo et al. 2003) studies. In the anterior cingulate there were 28
taste foci and 14 smell foci. In the orbitofrontal cortex there were

56 taste foci and 49 smell foci. In the insula there were 72 taste foci
and 36 smell foci. The standardized proportional MNI stereotaxic
coordinates representing each of the activation peaks were plotted
onto a high resolution MRI image from a single subject who did
not participate in any of the studies. In order to display the
activation foci relative to one another, the stereotaxic coordinates
corresponding to the plane of interest were averaged so that peaks
could be plotted onto a single MRI section that would be most
representative of the group of foci. In the sagittal plane peaks were
collapsed across hemisphere. Thus, all left and right hemisphere
peaks are plotted according to their anterior–posterior position (y-
value) and inferior–superior position (z-value) on the average
sagittal plane from the group, which represents the left–right
position (x-value). A similar procedure was followed for the insula/
opercular peaks. For the orbitofrontal cortex the anterior–posterior
position and left–right position was used to plot peaks onto the
average axial plane, which represents the inferior–superior
position. The average x-value (sagittal plane) for the insula was
38, the average x-value for the anterior cingulate was 8 and the
average z-value (axial plane) for the orbitofrontal cortex was �12.
The three plots clearly show that chemosensory stimuli activate a
variety of regions within the insula, anterior cingulate, and
orbitofrontal cortex and that much of these regions is responsive
to both gustatory and olfactory stimulation. However, visual
inspection of the plots suggests that taste stimuli tend to activate
the caudal and lateral orbitofrontal cortex; whereas olfactory
stimuli do not (especially in the right hemisphere). In contrast,
olfactory stimuli tend to activate the ventral most insular region,
which is continuous with primary olfactory cortex; whereas
gustatory stimuli do not
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because simultaneous presentation of two unimodal in-
puts was not compared to independent presentation of
these same inputs it is not known if the responses to the
multimodal stimuli were supra-additive and thus com-
parable to the audio-visual multimodal cells identified in
the superior colliculus of the cat (Stein 1998).

In the human, several neuroimaging studies have
been performed where unimodal stimulation with a taste
or an odor were compared to bimodal (simultaneous)
presentation of the same tastes and odors (Small et al.
1997a, b, 2004; de Araujo et al. 2003). Consistent with
the results discussed above, De Araujo et al. (2003)

reported activation in the frontal operculum, ventral
insula/caudal OFC, amygdala, and anterior cingulate
cortex to unimodal stimulation with either a taste or an
odor and to bimodal stimulation with a taste/odor
mixture. A study by Small et al. (2004) using a similar
design also found activity in frontal operculum, ventral
insula/caudal OFC, and anterior cingulate cortex to a
taste/odor mixture; but in this study the response was
supra-additive, in that greater activity was observed
when the subjects received a taste/odor mixture com-
pared to the summed neural activation evoked by
independent stimulation with the taste and the odor
components (Fig. 2). Thus, although the integration
appeared to be stronger in the Small et al. (2004) study,
both studies highlight the importance of these regions in
flavor processing. Importantly, the ventral insula/caudal
OFC region is likely analogous to the area where mul-
timodal neurons were reported in monkeys by Rolls and
Baylis (1994). Additional areas also showed supra-
additive responses, but not consistently in both studies.
Only De Araujo et al. (2003) observed a supra-additive
response in the anterior OFC, whereas Small et al.
(2004) reported supra-additive responses in the ventral
lateral prefrontal cortex, dorsal insula, and posterior
parietal cortex that were not reported by De Araujo
et al. (2003). Future studies are clearly needed to
determine the role for these regions in taste/odor inte-
gration but it is noteworthy that the posterior parietal
cortex activation is in a similar region (intraparietal
sulcus) that Calvert (2001) outlined as important in
audio-visual integration and may indicate that there are
common mechanisms devoted to sensory integration
across all modalities.

Role of experience in odor/taste integration

A distinctive characteristic of odor/taste integration is
that for enhancement effects to occur, the odor and taste
components need to be perceptually congruent, or similar
(Frank et al. 1991; Schifferstein andVerlegh 1996; van der
Klaauw and Frank 1996). Thus, the degree of enhance-
ment produced by an odor for a particular taste was
found to be significantly correlated with ratings of the
perceived similarity of the odorant and tastant (Frank
et al. 1991). Perceptual congruency is most evident in the
observation that some odors, when sniffed, elicit
descriptions of qualities that are more usually associated
with basic taste qualities (Burdach et al. 1984; Dravnieks
1985). These descriptions appear to have many of the
qualities of synesthesia, in which a stimulus in one sensory
modality reliably elicits a consistent corresponding stim-
ulus in another modality (Stevenson et al. 1998; Martino
and Marks 2000; Cytowic 2002). However, in contrast to
synaesthetic phenomena across other sensory modalities,
the possession of taste properties by odors is almost
universal, particularly in the case of commonly consumed
foods, e.g. the sweet smell of honey and the sour smell of
vinegar. Such smelled taste qualities have been found to

Fig. 2 Super-additive responses in the anterior cingulate cortex
(ACC) and ventral insula/caudal OFC (vINS) in a group random
effects analysis of a congruent taste/odor solution compared to the
summed activity of its constituents (Small et al. 2004). The
congruent solution consisted of sweet/vanilla. A salty/vanilla
solution was also made to represent the incongruent taste/odor
combination. In the graphs the response to the congruent taste/
odor mixture=turquoise; incongruent taste/odor mixture=yellow;
vanillin in solution=red; sucrose in solution=blue; and saline
solution=green. y-Axis=response in arbitrary units. x-Axis=peri-
stimulus time in seconds
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be significant predictors of the extent to which an odor
will modify the perception of a tastant in solution (Ste-
venson et al. 1999; Nguyen et al. 2002).

The importance of congruency is also shown in other
psychophysical and behavioral demonstrations of odor/
taste interactions. Dalton et al. (2000) demonstrated that
orthonasal (i.e. sniffed) detection thresholds for an
odorant were significantly reduced while subjects held a
taste in the mouth, but only if the taste was perceptually
congruent. Similar findings of an increased sensitivity to
tastes at threshold level in the presence of, or immedi-
ately following the sniffing of, a congruent odor have
also been reported (Djordjevic et al. 2003; Prescott
2004). Odor/taste integration has also been implicated in
reports of cross-modal influences on the processing
speed of chemosensory information. Simultaneous or-
thonasal presentation of congruent odors was found to
reduce taste recognition reaction times, relative to
incongruent pairs (White and Prescott 2001).

Physiological indices also reveal a strong influence of
perceptual congruency. In studies of brain event-related
potentials, latencies to odors were significantly shorter,
and amplitudes greater, when presented with congruent
but not incongruent tastes (Welge-Lüßen et al. 2004).
Supra-additive responses observed in neuroimaging
studies (De Aruajo et al. 2003; Small et al. 2004) were in
response to congruent taste/odor mixtures. Small et al.
(2004) reported that the posterior parietal cortex, frontal
operculum, anterior cingulate cortex, dorsal insula, and
ventral insula/caudal OFC responded significantly more
to a congruent taste/odor mixture (sucrose/vanillin)
versus an incongruent taste/odor mixture (saline/vanil-
lin) and that these same regions were not activated by
comparison of the incongruent mixture with the sum of
its parts (Fig. 2). Interestingly, a small supra-additive
response was observed in an adjacent region of ventral
insula to the incongruent mixture. Small et al. (2004)
proposed that this activity reflected the convergence of
two familiar unimodal stimuli (salty and vanilla) into an
unfamiliar mixture and suggested that the activation
may indicate that the region is important for flavor
learning. Consistent with this proposal, Sakai and col-
leagues noted that bilateral ablation of the insula (or
prefrontal cortex) disrupted taste–odor association
learning in rats (Sakai and Imada 2003).

Hence, a significant number of findings, from studies
using a variety of behavioral and physiological ap-
proaches tend to point to the ability of qualities in one
chemosensory modality to enhance responses to quali-
ties in another. Many of these findings underline the
importance of perceptual congruency in enhancement,
and this is consistent with the fact that multimodal
neurons in the caudal OFC will respond only if the taste,
odor, or visual stimulus is congruent across modalities.
For example, a cell will respond to glucose, blackcurrant
juice, the sight of the syringe that delivered the black-
currant juice and fruity odors, but not to salty, onion
odor, fishy odor, or the site of pliers (Rolls and Baylis
1994). However, as noted above, as in non-chemosen-

sory systems, there is evidence that enhancement as a
result of odor/taste integration can occur without con-
gruency (Small et al. 2004). There is also recent psy-
chophysical evidence of this, with a replication of the
Dalton et al. (2000) sub-threshold integration study
showing similar sensitivity enhancements for both con-
gruent and incongruent odor/taste pairs (Delwiche and
Heffelfinger 2003). Certainly, the existence of enhance-
ment effects due to perceptual congruency is not neces-
sarily incompatible with a multi-sensory integration of
odors and tastes that is independent of experience.
Perceptual congruency may be a phenomenon that arises
as a result of multisensory integration of odors and
tastes following repeated pairing.

How do taste-related odor qualities develop? Several
groups have emphasized the importance of associative
learning. For example, Rolls and colleagues (Rolls and
Bayliss 1994; Rolls 1997) have argued that bimodal
taste/odor neurons developed from unimodal neurons,
which originally responded only to olfactory informa-
tion, through learning of appropriate combinations of
signals during repeated co-exposure of particular tastes
with odors. Similarly, Frank and Byram (1988) pro-
posed that odors take on taste qualities through frequent
co-occurrence with particular tastes. Many food-related
odors are seldom, if ever, experienced in the mouth
without an accompanying taste. Given that combina-
tions of specific tastes with specific odors are relatively
invariant for most foods and beverages (at least within
cultures), this is a plausible explanation. In Western
cultures, we are unlikely, for example, to very often
consume combinations such as vanilla odor and salti-
ness, or chicken odor and sweetness, whereas if we ex-
change these tastes and odors, the combinations are
much more familiar. Consistent with this, it has been
reported that French and Vietnamese vary in their
judgments of the extent to which given odors and tastes
are seen as congruent (Nguyen et al. 2002).

An associative learning explanation for the origins of
odor ‘‘taste’’ properties was confirmed in a series of
experiments (Stevenson et al. 1995, 1998) in which rel-
atively novel odors, initially low in smelled sweetness
and sourness when sniffed, were repeatedly paired with
either sweet (sucrose) or sour (citric acid) tastes in
solution. Following co-exposure in a series of mock
discrimination tasks in which subjects were asked to pick
the odd sample out of three identical odor/taste pairs,
the odors were rated significantly higher in smelled
sweetness or sourness, depending on the taste with which
they were paired. In addition, odors associated with one
quality (e.g. sweetness) also decreased in the extent to
which they possessed the other quality (e.g. smelled
sourness). This appears to be a very rapid and enduring
process. Recent research has indicated that as little as a
single co-exposure with a sweet taste can render a novel
odor sweeter smelling (Prescott et al. 2004). In addition,
the effect does not diminish over time, even when the
odor is repeatedly experienced without the taste (Ste-
venson et al. 2000).
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Importantly, these effects appear to have a strong
perceptual reality, since they are independent of changes
in liking for the odors or awareness of which odors, and
tastes were paired (Stevenson et al. 1995, 1998). There is
also evidence that taste qualities in odors (e.g. smelled
sweetness) may often be functionally equivalent to those
same qualities experienced as tastants. Thus, the ability
of taste qualities in odors to influence taste perceptions
has recently been extended to include suppression of
taste intensity by incongruent or novel odors (Prescott
1999; see Fig. 3), while Stevenson et al. (1999) showed
that a sweet-smelling odor not only enhanced the
sweetness of sucrose in solution but also suppressed the
sourness of a citric acid solution. This latter effect cor-
responds to those interactions seen in binary taste mix-
tures, in which it is similarly found that sweetness
generally suppresses sourness (McBurney and Barto-
shuk 1973).

Like the acquisition of taste qualities by odors, the
ability of these odors to influence taste perceptions has
also been shown to be a function of associative learning.
Odors that initially either had either no impact on su-
crose sweetness or actually suppressed sweetness were
both found to enhance sweetness following an exposure
phase of repeated pairings with sucrose in solution
(Prescott 1999). Figure 3 shows the differing impact of
odors that vary in familiarity or initial smelled sweetness
on the sweetness of sucrose when combined in a mixture.
This variation is postulated to originate in different de-
gree of prior association with sweet tastes. Note that
following experimental exposure together with sucrose,
there is significant change in the ability of low familiarity
and/or low sweetness odors to modify sucrose sweetness.

Other behavioral effects noted above, such as the impact
of odors on measures of reaction time to name tastes
(White and Prescott 2002) and on sub-threshold odor/
taste integration (Breslin et al. 2003), have also recently
been shown to be subject to learning effects, in that they
occurred only following specific odor/taste pairings.

Current explanations of taste qualities in odors and
their impact on tastes in mixtures (McBurney 1986;
Frank et al. 1991, 1993; Stevenson et al. 1995; Schiffer-
stein and Verlegh 1996) propose that the interactions
between odors and tastes occur as a result of emerging
perceptual congruency, which arises out of associative
processes. This reflects a central encoding of these ele-
ments as dimensions of the same compound stimulus—a
flavor—in which qualities such as sweetness (whether
associated with a tastant or an odor) are perceptually
combined. It is this co-encoding of the odor and taste as
a flavor in memory that determines the subsequent
interactions of the elements of the flavor.

One account (Stevenson and Boakes 2004) proposes
that experiencing a novel odor involves comparison with
memories of previously encountered odors. If in the
initial experience of the odor it is paired with a taste, a
configural (unitary) stimulus is encoded in memory.
Subsequently, sniffing the odor alone will evoke the most
similar odor memory, that is, a flavor, which will include
both the odor and the taste component. Thus, for
example, sniffing caramel odor activates memorial rep-
resentations of caramel flavors, which includes a signif-
icant sweet component. This results either in perceptions
of smelled taste properties such as sweetness or, in the
case of a mixture, a perceptual combination of the
memorial odor representation with the physically pres-
ent taste in solution. In other words, perceptions are
being constructed from a combination of both ‘‘real’’
tastes and taste properties of the odor that are encoded
in memory. Such explanations are consistent with data
showing that memorial representations of chemosensory
qualities can combine with physically present stimuli to
produce mixtures that show very similar psychophysical
interactions to those of identical combinations of phys-
ically present qualities. These ‘‘mental mixtures’’ have
been demonstrated with combinations of different tastes
(Stevenson and Prescott 1997), odors (Algom and Cain
1991), as well as odor/taste mixtures (Algom et al. 1993).
In a direct test of this type of explanation, a recent study
in which a sweet tastant was combined with either
sniffed or imagined odors found essentially equivalent
patterns of odor/taste interactions—primarily suppres-
sion by an incongruent odor—in both conditions
(Djordjevic et al. 2004). However, cross-modal
enhancement and supra-additive neural responses occur
in other sensory modalities without the existence of
common perceptual experiences across modalities. As
noted earlier, there is evidence that this may be true for
chemosensory systems as well (Delwiche and Heffelfin-
ger 2003; Small et al. 2004), indicating that while
memorial processes may be an important aspect of fla-
vor perception, multisensory integration of odors and

Fig. 3 Ratings of the tasted sweetness of odor/sucrose mixtures,
relative to sucrose alone, showing initial suppression of sucrose
sweetness by odors low in smelled sweetness (LS) but varying in
familiarity (LF low familiarity; HF high familiarity), and enhance-
ment by a sweet-smelling, familiar odor (HS/HF). After subjects
received repeated exposures of the odors and sucrose together as
solutions, sweetness enhancement is additionally shown by two
odors (LS/HF; HS/LF). Reprinted from Prescott (1999), with
permission from Elsevier
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tastes may also occur independently of prior experience,
most likely facilitated by common spatial and temporal
properties (see below).

If the acquisition of taste-like properties by odors
reflects associative learning, then it is reasonable to
predict that odors that elicit taste perceptions develop
the ability to activate gustatory neurons, either as a di-
rect function of the olfactory perception or as a result of
a reactivation of a flavor memory. It would then follow
that food odors should preferentially activate gustatory
regions of the brain such as the junction of the dorsal
insula with the frontal operculum, which is thought to
represent the primary gustatory area (Scott and Plata-
Salaman 1999; Small et al. 1999). To test this hypothesis,
Leger et al. (2003) used fMRI to compare brain response
to a food odor (chocolate) with the responses to three
non-food odors (lavender, butanol, and farnesol). As
predicted, greater activity was observed in the primary
gustatory region to the chocolate compared to all other
odors. In addition, activation in the hypothalamus was
only observed during retronasal experience of the
chocolate odor, indicating that mode of olfactory
delivery (i.e. orthonasal versus retronasal olfaction) may
interact differently with food versus non-food odors.

Role of temporal and spatial synchrony in odor/taste
integration

Studies of visual, auditory, and somatosensory systems
have highlighted the importance of spatial and/or tem-
poral contiguity in facilitating cross-modal sensory
integration (Calvert et al. 1998; Stein 1998; Driver and
Spence 2000). The importance of temporal and spatial
factors lie in their ability to influence whether or not
sensory inputs are perceived as arising from a common
event or object or as two separate events or objects. In
the superior colliculus the receptive fields of multisen-
sory neurons are in spatial register with one another,
and by determining the spatial correspondence of
receptive fields over a large population of neurons, each
representation in the structure can be ‘‘mapped’’ in an-
other modality’s spatial coordinates (Stein 1998). This
physiology promotes unitary perceptions and enables
the sensory capture of one modality by another. For
example, while watching television the actors’ voices are
perceived to emanate from their lips even though the
sound actually originates from speakers on the side of
the screen. However, this ‘‘capture’’ of the auditory
information by the visual input only occurs if there is
relatively little delay between the audio and video track.

Likewise, temporal and spatial contiguity may be
crucial determinants of odor/taste integration because
they promote perception of disparate taste, odor, and
oral somatosensations as a common object—a food.
Akin to the example of visual capture of auditory
information presented above, there is a well-known
olfactory location illusion, in which retronasal percep-
tion of odors is universally interpreted as originating in

the mouth, rather than the nose (‘‘oral capture’’). The
illusion is so powerful that odors are often mistaken for
‘‘tastes’’ (Murphy et al. 1977; Rozin 1982). For example,
loss of retronasal olfactory inputs causes the ‘‘taste’’ of
foods to change during a head cold. It has been argued
that the illusion served to bring taste and odor into a
common spatial registry to facilitate integration (Rozin
1982; Green 2002; Small et al. 2004). It is currently un-
known if the effect is mediated primarily by gustatory or
somatosensory (or both) signals, although the demon-
stration that somatosensory stimulation can ‘‘capture’’
taste by determining its perceived spatial locus is rele-
vant in this regard (Todrank and Bartoshuk 1991; Green
2002).

The illusion appears to depend on both the spatial
and temporal contiguity of the discrete sensory inputs.
Von Bekesy (1964; see Fig. 4) emphasized the impor-
tance of temporal factors by showing that the perceived
location of an odor (mouth versus nose) and the extent
to which an odor and taste were perceived as one sen-
sation or two could be manipulated by varying the time
delay between the presentation of the odor and taste.
With a time delay of zero (simultaneous presentation),
the apparent locus of the odor was the back of the
mouth and the odor/taste mixture was perceived as a
single entity. When the odor preceded the taste, the
sensation was perceived as originating in the nose; when
the taste preceded the odor, the sensation was located on
the tongue tip. Consistent with this, Sakai et al. (2001)
demonstrated that odor-induced taste enhancement can
occur whether the odor is presented orthonasally
(sniffed) or retronasally (in mouth), providing that the
odor and taste are presented simultaneously.

Other evidence for the role of spatial or temporal
contiguity in odor/taste integration comes from the

Fig. 4 Temporal and spatial determinants of odor/taste integra-
tion. ‘‘Combination of smell and taste into a single sensation. A
varying time difference between the stimuli moves the locus of
sensation from the tip of the nose back to the throat and forward
again to the tip of the tongue.’’ Reprinted (including caption in
italics) from von Bekesy (1964), with permission from The
American Physiological Society
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animal learning literature. Rescorla (1980) demonstrated
in rats that simultaneous, rather than successive, pre-
sentation of an odor and taste results in more effective
conditioning of rats to respond uniquely to a compound
stimulus, rather than to its separate elements. More re-
cently, it has been shown that odors can potentiate taste
aversions but only if the odor is delivered in the same
apparent spatial location, that is, retronasally (Slotnick
et al. 1997). This latter finding, in particular, highlights
the probable importance of the functional meaning of
sensory stimuli in determining how they are processed
by the brain. For example, pairing an odor with gas-
trointestinal illness is unlikely to be adaptive if the odor
was not associated with a food (Rozin 1982). Such
principles appear to be reflected in neural processing of
odor signals. In humans, deactivations in the insula,
operculum, caudal OFC, and anterior cingulate cortex
have been reported following simultaneous delivery of
an orthonasally presented odor with a taste (Small et al.
1997a, b), even though the stimuli were congruent (e.g.
sweet with strawberry odor) (Fig. 5). This result is in
striking contrast to the super-additive responses ob-
served in these same regions when odors are given ret-
ronasally. Taken together, the data suggest that the
more likely a taste and odor are perceived as originating

from a common object/source, the greater the ability of
one component to influence the other and the greater the
likelihood that integrative events will occur such as
enhancement and super-additive neural responses.

Role of attention in odor/taste integration

In addition to being mediated both by experience and
temporal/spatial contiguity, odor/taste integration ap-
pears to be modulated by attention. A general finding
across sensory modalities is that responses to a partic-
ular modality can be enhanced by the presence of signals
in another modality that focus attention to the response
modality. For example, visual cues to attend to likely
upcoming olfactory stimuli improved response accuracy
to those stimuli (Spence et al. 2000, 2001). The relatively
few examinations of such effects within multimodal
chemosensory stimuli provide mixed findings. A recent
study of attentional manipulations during a discrimi-
nation task involving the elements of a congruent odor/
taste pair (vanillin/sucrose) demonstrated the poor
ability of subjects to selectively attend to the odor
component when it had to be distinguished from the
compound stimulus, as compared to when it was

Fig. 5 Coronal sections illustrating deactivation in the insula and
caudal OFC resulting from simultaneous presentation of odors on
long-handled cotton swabs and tastants on tongue shaped filter
papers versus independent presentation of the tastants (Small et al.
1997a, b). Numbers in the top right corner indicate the Talairach
coordinate in the coronal plane, i.e. ‘‘ y.’’ Color bar indicates t-

values. Areas of color indicate regions where unimodal taste
stimulation resulted in greater activity than bimodal taste/odor
stimulation. These suppressive effects likely resulted from the
spatial disparity of the odor and taste stimuli or divided attention
caused by the awareness that the components originated from
separate sources
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discriminated from water. In contrast, the taste alone
was more easily discriminated from the odor/taste
compound (Marks and Ashkenazi 2004). Similarly, La-
ing et al. (2002) have shown that subjects are better at
identifying single tastes in taste/taste mixtures than they
are at identifying odors in mixtures with a single odor
component and one or more taste components. These
findings highlight the unitary nature of the flavor per-
ception and also suggest that when odors and tastes are
sufficiently integrated as flavors, they are resistant to
attentional manipulations.

However, in contrast, it has been repeatedly demon-
strated that asking subjects to rate or attend to the dif-
ferent qualities within a flavor, tends to eliminate
enhancement effects (Frank et al. 1993; Clark and
Lawless 1994; van der Klaauw and Frank 1996). These
data suggest that the way in which attention is allocated
to the elements within a flavor stimulus may either
compromise or facilitate integrative processes, a phe-
nomenon that has been explained in terms of a distinc-
tion between analytical and synthetic perceptual
processes (Prescott 2004). The blending of odors to form
entirely new odors is a synthetic interaction (analogous
to the blending of colors), while the mixing of tastes is
typically seen as an analytic process, because individual
taste qualities do not fuse to form new qualities and, like
simultaneous auditory tones, can be distinguished from
one another in mixtures. The data on the impact of
attention on odor/taste interactions suggest that whether
an odor/taste mixture is perceived analytically as the
individual elements or synthetically as a flavor is deter-
mined by the perceptual ‘‘boundaries’’ that the subject
sets for a given complex stimulus, which in turn will
reflect the attentional focus demanded in the task (Frank
et al. 1993; Frank 2003). In the case of an odor/taste
mixture in which the elements are perceptually congru-
ent, combining those elements is essentially optional.
Multiple ratings of appropriate attributes force an ana-
lytical approach, whereas a single rating of a sensory
quality that can apply to both the odor and taste (e.g.
the tasted sweetness of sucrose and the smelled sweetness
of strawberry odor) encourages synthesis of the common
quality from both sensory modalities. These effects of
instructional sets on attention are analogous to those
seen in studies of cross-modal integration of vision and
hearing. Melara et al. (1992), for example, showed that
focusing on the overall similarity of visual or auditory
stimulus pairs, representing different stimulus dimen-
sions, versus focusing on their component dimensions,
could influence whether the pairs were treated as inter-
acting or separable dimensions (Garner 1974), respec-
tively.

The impact of attentional modulation on the extent
to which odors and tastes initially become integrated
into flavor (as shown by increased perceptually similar-
ity), as well as any subsequent influence of those odors
on tastes in solution, was recently investigated by
manipulating the perceptual strategy used (analytic
versus synthetic) during the co-exposure of novel odors

and a sweet tastant (Prescott et al. 2004). While simple
co-exposure was sufficient to produce sweeter smelling
odors, only when the elements were treated as a syn-
thetic whole during this exposure did the odors subse-
quently enhance sweetness in solution. In contrast, an
analytical exposure strategy that emphasized the dis-
tinctiveness of the elements was found to inhibit the
ability of the odor to influence tastes in solution (see
Fig. 6). These data are therefore analogous to those
showing the role of focused attention in binding visual
features to form recognizable objects (Treisman 1999).
In the case of flavor, binding different modalities may
serve the biologically imperative function of ensuring
adequate identification of foods prior to ingestion
(Gibson 1966).

To date, the influence of attention on taste/odor
integration has not been studied systematically at the
physiological level. However, indirect evidence for the
importance of attention on neural integration of tastes
and odors comes from an early PET study of flavor
processing (Small et al. 1997a, b). In the study odors
were presented on long-handled cotton swabs and tastes
on tongue-shaped filter papers. During bimodal stimu-
lation subjects were required to open their mouth to
receive the taste and simultaneously sniff the end of the

Fig. 6 The impact of sweet-smelling odors on perception of tastes
depends on perceiving the mixture as a whole flavor. Changes in the
ratings of the tasted sweetness of mixtures of sucrose and (initially)
novel odors, relative to sucrose alone, for groups exposed to these
mixtures under different attentional conditions. A significant
increase in mixture sweetness was present for the group using a
synthetic attentional strategy that emphasized the unitary nature of
the elements as a flavor, but not for the groups in which the
elements were either attended to as separate elements (analytic) or
in which the elements were never combined as a mixture (unmixed).
The ‘‘non-exposed’’ odors had actually been exposed together with
sucrose on one occasion—at the pre-test, in which the initial ability
of these odors to influence sweetness was assessed. This modest
degree of exposure of the odor plus sucrose was shown to produce
sweeter-smelling odors, irrespective of exposure group. Reprinted
from Prescott et al. (2004), by permission of Oxford University
Press

353



cotton swab. Not only was the odor delivered orthona-
sally, the subject was also well aware that the odor and
taste derived from separate objects. Thus the experi-
menters had inadvertently created a situation that
maximized the possibility of divided attention between
the modalities, which resulted in suppression in cortical
chemosensory regions in the comparison of the bimodal
versus the unimodal conditions (Fig. 5).

Asymmetrical sensory involvement in flavor processing

Recent studies of gustatory, olfactory, and flavor pro-
cessing has elucidated a list of regions that are likely
important in taste/odor integration including the insula,
operculum, caudal OFC and anterior cingulate cortex.
These regions represent primary, secondary, and tertiary
gustatory areas, and secondary and tertiary olfactory
areas of the brain. Notably, absent from this list is the
piriform cortex, which represents the primary olfactory
area in the human (Zatorre et al. 1992; Sobel et al. 2000).
This is because although olfactory responses have been
isolated in the insula and operculum, which includes
primary gustatory cortex, tastes do not appear to activate
the piriform region (Scott et al. 1986; Yaxley et al. 1988,
1990; Kinomura et al. 1994; Small et al. 1997a, 1997b;
Cerf et al. 1998; Zald et al. 1998, 2002; Frey and Petrides
1999; Kobayakawa et al. 1999; Scott and Plata-Salaman
1999; O’Doherty et al. 2001). This asymmetrical rela-
tionship is also present in perceptual experiences. Taste
perception is almost always accompanied by olfactory
and oral somatosensory perception in the context of
feeding, whereas olfaction often occurs outside the con-
text of feeding. Furthermore, while there is ample evi-
dence to support the acquisition of taste-like properties
by odors, there have been no reports of the acquisition of
odor-like properties by tastes. Therefore it is possible
that, like visual organization, in which there are special-
ized regions for processing specific classes of visual stimuli
(e.g. the fusiform face area or the parahippocampal place
area; Epstein and Kanwisher 1998; Mesulam 1998), the
olfactory systemmay be comprised of several subsystems,
only one of which is specialized for flavor processing. This
sort of division may not be present in gustatory organi-
zation because taste perceptions are always relevant to
flavor processing by virtue of the fact that such percep-
tions require a stimulus to be in the mouth.

Asymmetrical involvement of gustatory and olfactory
regions in flavor processing is also supported by negative
results from neuroimaging studies of taste/odor inte-
gration. First, in the PET study by Small and colleagues
(Small et al. 1997a, b) the piriform region was immune
to effects of divided attention resulting either from the
spatial disparity of the odor and the taste or the
knowledge that the stimuli originated from two separate
sources. Second, neither of the taste–odor integration
studies reported super-additive effects in the piriform
cortex (de Araujo et al. 2003; Small et al. 2004).

Summary

In the model of flavor processing that we have outlined
here, the neural substrates of a unitary flavor percept are
built over time by repeated experience of sensory phe-
nomenon appearing to originate from the oral cavity.
Thus the focus is not on which sensory inputs are neces-
sary for a stimulus to be considered a flavor but rather on
the fact that they are perceived to originate in the mouth.
The anterior insula, frontal operculum, OFC, and ante-
rior cingulate cortex are proposed as the key nodes of this
‘‘flavor network’’. The model also posits that there are
several factors that influence whether or not disparate
inputs are perceived as coming from a common source.
These include previous experience with the particular
combination of sensory inputs, temporal and spatial
concurrence, and attentional allocation. From this it also
follows that although the formation of the flavor percept
is dependent upon multisensory integration, the system
can subsequently be engaged by unimodal stimulation.
Finally, it is proposed that there is asymmetric contri-
bution of olfaction and gustation to flavor such that only
retronasally perceived odors (via the mouth) and odors
previously experienced with taste (irrespective of mode of
delivery) engage the flavor system. This notion is in par-
tial agreement with Rozin (1982), who argued that
olfaction is a dual sensemodality because it contributes to
perception of external and internal objects (via orthona-
sal and retronasal olfaction, respectively). However, our
model differs from Rozin’s (1982) because we also argue
that, as a result of taste/retronasal odor association
learning, orthonasally perceived odors may also engage
the system. This proposal does not negate the possibility
that retronasally perceived odors differentially engage
other brain circuitry by, for example, activating homeo-
static mechanisms related to feeding. Thus, we propose
that flavor represents a functional sensory system with
inputs from somatosensation, gustation, and olfaction
where the key is the meaning of the sensation rather than
its precise organ or site of origin. This concept of flavor
recalls Gibson’s (1966) ecological approach in which
perceptual systems are defined by function, rather than
tied to the organ of transduction.
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